Extended Entity-Relationship (EER) Modeling

Peter Y. Wu
Department of Computer and Information Systems
Robert Morris University

Extended Entity-Relationship Model

• EER – Extended or Enhanced ER Model
• Developed in the mid 1980s… bearing also the influence of object-oriented modeling.
• The main concept is: Generalization and Specialization – one and the same concept.
• Other concepts such as Categorization and Aggregation will not be covered; these are not considered main concepts.

EER: Generalization/Specialization

Consider modeling the employees of a company, such as a personnel database system. We need to have name, employee id, address, department. (as attributes for each employee…)

• Some employees have a monthly salary, but some others have an hourly wage rate and are paid by the hours they have worked. How should we then model that?

EER: Generalization/Specialization

• Let us try two kinds of employees: salaried-employee, and hourly-employee …
• Not a good solution: because we need to support the idea of employee – for applications such as sending a letter to each employee; should not need to deal with two kinds.

EER: Generalization/Specialization

• Other reasons that it is not a good solution: if we need to identify also the employee skill as secretary or technician, we will also need two kinds for each …
• More trouble when we need to support the simple idea of employee as an entity type.

SOLUTION: Specialization

• Define a subset of an entity set, called a subclass.
• Establish additional attributes for the subclass.
• Subclass entities inherit attributes from the superclass.

EER: Specialization

• Employee is an entity type, with these attributes: name, employee id, address, department…

Specialization:

• Hourly Employee is a subclass of Employee.
• Each entity of Hourly Employee is also an entity of Employee, but has the additional attribute: hourly rate.
• Employee is the superclass of Hourly Employee.
• New ER Diagram symbol:
EER: Subclass/Superclass

Formal definition:

For every entity $e \in E_2 \Rightarrow e \in E_1$.

- That is, every entity of the subclass E_2 is also an entity of the superclass E_1.
- Thus, E_2 inherits every attribute of E_1.
- Key attributes for E_1 also serve for E_2.
- Since E_2 inherits attributes from E_1, we cannot define an attribute for E_2 with the same name as an attribute of E_1.
- A similar rule applies to relationships.
- The key defined for E_1 applies also to E_2; we cannot define another key for the subclass. (But possibly an alternate key.)

Example:

For every entity $e \in E_2 \Rightarrow e \in E_1$.

- That is, every entity of the subclass E_2 is also an entity of the superclass E_1.
- Thus, E_2 inherits every attribute of E_1, and every relationship involved with E_1.
- Key attributes for E_1 also serve for E_2. (But possibly an alternate key.)

EER: Specialization example

- Every hourly employee ($e \in E_2$) is also an employee ($e \in E_1$).

Example:

Every hourly employee ($e \in E_2$) is also an employee ($e \in E_1$).

Specialization:

- Every hourly employee also has name, employee id, ….
- An hourly employee has the hourly rate (additional attribute).
- Employee id serves as key for all employees; it also serves for all hourly employees.
- If an employee is related to some projects (to work on), the same applies to an hourly employee.

EER: Specialization Constraints

- A salaried employee is NOT an hourly employee, and an hourly employee is NOT a salaried employee; the subclasses are disjoint.

Example:

- Every employee is either salaried or hourly; the superclass entity employee has total participation in the specialization.

- That is, $E_1 \Rightarrow e \in E_1$.
- For every entity e, $e \in E_1 \Rightarrow e \in E_11$ or $e \in E_12$.
- That is, $E_11 \cup E_12 = E_1$.
EER: Specialization Constraints

- Some employees are technicians but not every one; the superclass entity employee has partial participation in the specialization.
- E1 has partial participation in the specialization into E2.
- There may exist some entity e ∈ E1 such that e ∉ E2.

EER: Specialization Constraints

- A salaried employee may also be a technician; the two entity sets – subclasses of entity set Employee overlap.
- E11 and E12 are overlap.
- There may exist entity e ∈ E1 such that e ∈ E11 and e ∈ E12.
- That is, E11 ∩ E12 ≠ φ.

EER: Specialization Constraints

- Specialization constraints NOT specified…
- Quite possibly the two subclasses overlap, but the designer did not specify. The two subclasses were derived from two different paths of specialization.

EER: Specialization Constraints

- Example: total participation in overlapping subclasses…
- Every employee is one or more of the following: a technician, a secretary, or a manager – and these are overlapping subclasses.
- Overlapping subclasses will also lead to the concept of multiple superclasses of an entity type. (why?)

EER: Specialization Constraints

- Specialization of an entity set leads to subsets of the entity set; these are called subclasses of the superclass.
- The participation of the superclass in the specialization may be total or partial. (Do not confuse with participation constraint in a relationship!)
- The subclasses in the specialization may be disjoint or overlap. (Note: overlap may lead to complications.)
- A subclass as an entity set can be specialized further into other subclasses.
- But overlapping subclasses may specialize into the same subclass entity set, having multiple superclass entity sets.
- Consider the intersection of two overlap subclasses…
- It is a subclass which inherits from more than one superclass, attributes as well as relationships.
- It is called multiple inheritance.
EER: Specialization

Example of multiple inheritance...

- university member

- employee

- student assistant

- social sec no.

- wage rate

- student

- employee

- university

EER: Generalization

- For specialization, we start with the superclass.
- Specialization creates subsets – subclasses of the superclass.
- **Generalization** is the reverse of specialization, we start with the subclasses.
- Generalization formulates a collective way of characterizing the concept of all subclasses as an entity set, that is, the superclass.

EER: Generalization Example

Given trucks, and cars, as two entity sets...

- Vehicle

- Truck

- Car

- license no.

- max load

- max passengers

- license no.

- license no.

- license no.

Understanding EER Model …

- For every entity e_2 of E_2, e_2 is also an entity of E_1. Therefore, e_2 has values for all these attributes A_1, K, A_2.
- Attribute K is key for E_1; it can also serve as a key attribute for E_2.
- However, an entity e_1 of E_1 may or may not be an entity of E_2.

Understanding EER Model …

- For every entity a of A, there is an entity c of C such that the entities a and c are related by relationship R_2; for every entity c of C, there is an entity d of D such that the entities c and d are related by relationship R_1.
- Therefore, D has at least as many entities as A.