Extended Entity-Relationship (EER) Modeling

Peter Y. Wu
Department of Computer and Information Systems
Robert Morris University

Extended Entity-Relationship Model

• **EER** – Extended or Enhanced ER Model
• Developed in the mid 1980s… bearing also the influence of object-oriented modeling.
• The *main* concept is: **Generalization** and **Specialization** – one and the same concept.
• Other concepts such as Categorization and Aggregation will not be covered; these are not considered main concepts.
Consider modeling the employees of a company, such as a personnel database system. We need to have name, employee id, address, department. (as attributes for each employee…)

- Some employees have a monthly salary, but some others have an hourly wage rate and are paid by the hours they have worked. *How should we then model that?*

Not a good solution: because we need to support the idea of employee – for applications such as sending a letter to each employee; should not need to deal with two kinds.
EER: Generalization/Specialization

• Other reasons that it is not a good solution: if we need to identify also the employee skill as secretary or technician, we will also need two kinds for each …
 \{salaried_secretary, hourly_secretary, salaried_technician, hourly_technician\}
• More trouble when we need to support the simple idea of employee as an entity type.

SOLUTION: Specialization
• Define a subset of an entity set, called a subclass.
• Establish additional attributes for the subclass.
• Subclass entities inherit attributes from the superclass.

EER: Specialization

• Employee is an entity type, with these attributes: name, employee id, address, department…

Specialization:
• Hourly Employee is a subclass of Employee.
• Each entity of Hourly Employee is also an entity of Employee, but has the additional attribute: hourly rate.
• Employee is the superclass of Hourly Employee.
• New ER Diagram symbol:
EER: Subclass/Superclass

Formal definition: For every entity $e \in E2 \Rightarrow e \in E1$.

- That is, every entity of the subclass $E2$ is also an entity of the superclass $E1$.
- Thus, $E2$ inherits every attribute of $E1$, and every relationship involved with $E1$.
- Key attributes for $E1$ also serve for $E2$.

Since $E2$ inherits attributes from $E1$, we cannot define an attribute for $E2$ with the same name as an attribute of $E1$.

A similar rule applies to relationships.

The key defined for $E1$ applies also to $E2$; we cannot define another key for the subclass. (But possibly an alternate key.)

EER: Specialization example

- Every hourly employee ($e \in E2$) is also an employee ($e \in E1$).

Specialization:

- Every hourly employee also has name, employee id,
- An hourly employee has the hourly rate (additional attribute).
- Employee id serves as key for all employees; it also serves for all hourly employees.
- If an employee is related to some projects (to work on), the same applies to an hourly employee.
EER: Specialization example

- Every hourly employee \((e \in E_2)\) is also an employee \((e \in E_1)\).

Specialization:
- If an employee is related to some projects (to work on), the same applies to an hourly employee.
- Hourly employees may also work on some projects.

EER: Specialization

- A superclass entity set can have **multiple** entity sets as subclasses.
- There are also many ways of specialization to form the subclasses.
EER: Specialization Constraints

- A salaried employee is NOT an hourly employee, and an hourly employee is NOT a salaried employee; the subclasses are **disjoint**.

 ![Diagram](image)

 - E11 and E12 are disjoint ...
 - For every entity e, $e \in E11 \Rightarrow e \notin E12$ and $e \in E12 \Rightarrow e \notin E11$.
 - That is, $E11 \cap E12 = \emptyset$.

EER: Specialization Constraints

- **Every** employee is either salaried or hourly; the superclass entity employee has **total participation** in the specialization.

 ![Diagram](image)

 - E1 has **total participation** in the specialization into E11 and E12.
 - For every entity e, $e \in E1 \Rightarrow e \in E11$ or $e \in E12$.
 - That is, $E11 \cup E12 = E1$.
EER: *Specialization* Constraints

- *Some* employees are technicians but not every one; the superclass entity employee has **partial participation** in the specialization.

 ![Diagram](image)

- **E1** has *partial participation* in the specialization into **E2** ...
- There may exist some entity $e, e \in E1$ such that $e \notin E2$.

EER: *Specialization* Constraints

- A salaried employee *may also be* a technician; the two entity sets – subclasses of entity set Employee **overlap**.

 ![Diagram](image)

- **E11** and **E12** are **overlap** ...
- There may exist entity $e \in E1$ such that $e \in E11$ and $e \in E12$.
- That is, $E11 \cap E12 \neq \emptyset$.
EER: *Specialization* Constraints

- Specialization constraints NOT specified…

- Quite possibly the two subclasses overlap, but the designer did not specify. The two subclasses were derived from two different paths of specialization.

EER: *Specialization* Constraints

- Example: total participation in overlapping subclasses…

- Every employee is one or more of the following: a technician, a secretary, or a manager – and these are overlapping subclasses.

- Overlapping subclasses will also lead to the concept of *multiple superclasses* of an entity type. (why?)
EER: *Specialization* Constraints

- Specialization of an entity set leads to subsets of the entity set; these are called subclasses of the superclass.
- The participation of the superclass in the specialization may be total or partial. *(Do not confuse with participation constraint in a relationship!)*
- The subclasses in the specialization may be disjoint or overlap. *(Note: overlap may lead to complications.)*

EER: *Specialization*

- A subclass as an entity set can be specialized further into other subclasses.
- But overlapping subclasses may specialize into the same subclass entity set, having multiple superclass entity sets.
- Consider the intersection of two overlap subclasses…
- It is a subclass which inherits from more than one superclass, attributes as well as relationships.
- It is called multiple inheritance.
EER: *Specialization*

Example of multiple inheritance…

![EER diagram for specialization]

EER: *Generalization*

- For specialization, we start with the superclass.
- Specialization creates subsets – subclasses of the superclass.
- **Generalization** is the *reverse of specialization*, we start with the subclasses.
- Generalization formulates a collective way of *characterizing the concept of all subclasses* as an entity set, that is, the **superclass**.
EER: *Generalization* Example

Given trucks, and cars, as two entity sets…

- Generalization provides the **same** modeling functionalities as specialization. No difference!

Understanding EER Model …

- For every entity e_2 of $E2$, e_2 is **also** an entity of $E1$. Therefore, e_2 has values for all these attributes $A1$, K, $A2$.
 - Attribute K is key for $E1$; it can also serve as a key attribute for $E2$.
 - However, an entity e_1 of $E1$ may or **may not** be an entity of $E2$.
For every entity a of A, there is an entity c of C such that the entities a and c are related by relationship R_2; for every entity c of C, there is an entity d of D such that the entities c and d are related by relationship R_1.

Therefore, D has at least as many entities as A.